• English

上海凡默谷信息技術有限公司

上海凡默谷信息技術有限公司

上海市

021-50263208
客服微信:ipharmogo

周一至周五 9:00~19:00

解決方案
  • 首頁
  • 關于我們
    • 公司簡介
    • 典型用戶
    • 合作伙伴
  • 新聞資訊
    • 培訓通知
    • 公司動態
  • 產品中心
    • GastroPlus
    • ADMET Predictor
    • DDDPlus
    • 其他產品
  • 培訓中心
    • 視頻匯總
    • 技術視頻
    • 凡默谷技術文章
    • 使用FAQ
    • 歷年文獻匯總
  • 在線申請
  • 聯系我們
  • 首頁
  • 關于我們
    • 全部
    • 公司簡介
    • 典型用戶
    • 合作伙伴
  • 新聞資訊
    • 全部
    • 培訓通知
    • 公司動態
  • 產品中心
    • 全部
    • GastroPlus
    • ADMET Predictor
    • DDDPlus
    • 其他產品
  • 培訓中心
    • 全部
    • 視頻匯總
    • 技術視頻
    • 凡默谷技術文章
    • 使用FAQ
    • 歷年文獻匯總
  • 在線申請
  • 聯系我們
GastroPlus 在口服吸收、制劑開發等的應用文章 (2011—2020 )
  1. 您現在所在位置:
  2. 網站首頁
  3. GastroPlus系列文章匯總

GastroPlus 在口服吸收、制劑開發等的應用文章 (2011—2020 )

2020-10-18 17:56:19

導  讀


凡默谷技術部精取了2011-2020年10月GastroPlus在口服吸收、制劑開發等的應用文章97篇。

其中序號1-30的文章是2019年8年-2020年10月新增文章。

希望對您的業務或專業學習有所幫助。內容如下:


1. 使用基于生理的生物藥劑學模型(PBBM)預測速釋制劑空腹和餐后的生物等效性


Prediction of fasted and fed bioequivalence for immediate release drug products using physiologically based biopharmaceutics modeling (PBBM).

Jereb R, Kristl A, Mitra A. Eur J Pharm Sci. Volume 155, 1 December 2020, 105554.IF= 3.616


2. 聯合體外-計算機模擬的方法,預測BCS II / IV類弱堿阿苯達唑及其主要代謝物阿苯達唑亞砜的口服生物利用度邊界


A combined in vitro in-silico approach to predict the oral bioavailability of borderline BCS Class II/IV weak base Albendazole and its main metabolite Albendazole Sulfoxide.

Pettarin M, Bolger MB, Chronowska M. Eur J Pharm Sci. Volume 155, 1 December 2020, 105552. IF= 3.616


3. 使用基于生理的大鼠吸收模型,考察不同粒徑的非諾貝特納米懸浮液對生物藥劑學性能的影響


Impact of differential particle size of fenofibrate nanosuspensions on biopharmaceutical performance using physiologically based absorption modeling in rats.

Jain D, Thakur PS, Thakore SD, Samal SK, Bansal AK. J Drug Deliv Sci Technol. Volume 60, December 2020, 102040. IF= 2.734


4. 預測進食狀態和粒度對ODM-204吸收的影響


Predicting the effect of prandial stage and particle size on absorption of ODM-204.

Ojala K, Schilderink R, Nykanen P, van Veen B, Malmstrom C, Juppo A, Korjamo T.Eur J Pharm Biopharm. Volume 156, November 2020, Pages 75-83. IF= 4.604


5.  IMI-口服藥物的生物藥劑學方法-評價自下而上的PBPK方法預測的成功率的第4部分:采用改進后的數據和建模策略的預測準確性和軟件比較


IMI – Oral biopharmaceutics tools project – Evaluation of bottom-up PBPK prediction success part 4: Prediction accuracy and software comparisons with improved data and modelling strategies.

Ahmad A, Pepin X, Aarons L, Wang Y, Darwich AS, Wood JM, et al. Eur J Pharm Biopharm. Volume 156, November 2020, Pages 50-63. IF= 4.604


6. 食品級陽離子納米乳劑對結核分枝桿菌形態的轉變和腸道滲透的調節:體外-在體-GastroPlus計算機模擬研究


Morphological transition of M. tuberculosis and modulation of intestinal permeation by food grade cationic nanoemulsion: In vitro-ex vivo-in silico GastroPlus studies.

Alshehri S, Altamimi MA, Hussain A, Imam SS, Singh SK, Faruk A. Journal of Drug Delivery Science and Technology. Volume 60, December 2020, 101971. IF= 2.734


7.   通過計算機模擬研究,考察治療肺動脈高血壓的新型西地那非自乳化藥物遞送系統對吸收的改善


In Silico studies of novel Sildenafil self-emulsifying drug delivery system absorption improvement for pulmonary arterial hypertension.

Abrahim-Vieira BA, Souza AMTDE, Barros RC, Carmo FADO, Moreira RSS, Honorio TS, Rodrigues CR, Sousa VPDE, Cabral LM. An Acad Bras Cienc. (2020) 92(2). IF= 1.28


8.  瑞巴派特的生物藥劑學特征:黏液結合區域在對小腸滲透性的影響


Biopharmaceutical characterization of rebamipide: The role of mucus binding in regional-dependent intestinal permeability.

Markovic M, Zur M, Dahan A, Cviji? S. European Journal of Pharmaceutical Sciences. Volume 152, 1 September 2020, 105440. IF=3.616


9.  人工合成膜在建立睪丸激素透皮凝膠生物預測性IVPT中的應用


Application of synthetic membranes in establishing bio-predictive IVPT for testosterone transdermal gel.

Mohamed LA, Kamal N, Elfakhri KH, Ibrahim S, Ashraf M, Zidan AS. Int J Pharm. Volume 586, 30 August 2020, 119572. IF=4.845


10. 通過體外-計算機模擬的方法,評估同向旋轉雙螺桿擠出機制備的Apremilast固體分散體


In Vitro-In Silico Evaluation of Apremilast Solid Dispersions Prepared via Corotating Twin Screw Extruder.

Muvva A, Lakshman D, Murthy Dwibhashyam VSN, Dengale SJ, Lewis SA. J Drug Deliv Sci Technol. Volume 59, October 2020, 101844. IF=2.734


11.  使用新興的科技開發基于HME的藥品:從概念到臨床批的快速路線圖


Developing HME-Based Drug Products Using Emerging Science: a Fast-Track Roadmap from Concept to Clinical Batch.

Matic J, Paudel A, Bauer H, Garcia RAL, Biedrzycka K, Khinast JG. AAPS PharmSciTech. 22 June 2020. IF=2.401


12.  采用基于生理的吸收模型,探討食物和胃液pH值變化對恩曲替尼Entrectinib藥代動力學的影響


Physiologically Based Absorption Modelling to Explore the Impact of Food and Gastric pH Changes on the Pharmacokinetics of Entrectinib.

Parrott N, Stillhart C, Lindenberg M, Wagner B, Kowalski K, Guerini E, Djebli N, Meneses-Lorente G. AAPS J (2020) 22:78. IF= 3.737


13. 用于支持藥品開發,生產變更與控制的轉化建模策略的現狀和未來期望:研討會總結報告


Current State and Future Expectations of Translational Modeling Strategies to Support Drug Product Development, Manufacturing Changes and Controls: A Workshop Summary Report.

Pepin XJ, Parrott N, Dressman J, Delvadia PR, Mitri? M, Zhang X, Babiskin AH, Kolhatkar V, Suarez-Sharp S. J Pharm Sci. May 2020. IF=3.616


14.  采用含有棕櫚油和Capmul MCM的自納米乳化釋藥遞送系統,改善己酮可可堿Pentoxifylline的口服PK


Improved Oral Pharmacokinetics of Pentoxifylline with Palm Oil and Capmul MCM Containing Self-Nano-Emulsifying Drug Delivery System.

Shailendrakumar AM, Ghate VM, Kinra M, Lewis SA. AAPS PharmSciTech. 2020.IF= 2.401


15. 針對口服給藥的建模轉化策略:學術,工業和監管的觀點


Translational Modeling Strategies for Orally Administered Drug Products: Academic, Industrial and Regulatory Perspectives.

Sandra Suarez-Sharp, Anders Lindahl, Tycho Heimbach, Amin Rostami-Hodjegan, Michael B. Bolger, Siladitya Ray Chaudhuri, Bart Hens. Pharm Res. 2020 May 13;37(6):95. IF= 3.242


16.  使用生物相關溶出度測試和PBPK建模了解厄貝沙坦的口服吸收


Understanding the Oral Absorption of Irbesartan Using Biorelevant Dissolution Testing and PBPK Modeling.

Kaur N, Thakur PS, Shete G, Gangwal RP, Sangamwar AT, Bansal AK. AAPS PharmSciTech. IF=2.401


17. 具有生物相關性的胃排空模擬,及胃排空對模型藥物溶出和吸收動力學的影響


The biorelevant simulation of gastric emptying and its impact on model drug dissolution and absorption kinetics.

Vrbanac H, Trontelj J, Berglez S, Petek B, Opara J, Jereb R, Krajcar D, Legen I. Eur J Pharm Biopharm. Volume 149, April 2020, Pages 113-120. IF= 4.604


18. 使用兩相胃腸道模擬器評估藥物在體外的過飽和,并預測其體內性能:以BCS IIB藥物為案例


Evaluating supersaturation in vitro and predicting its performance in vivo with Biphasic gastrointestinal Simulator: A case study of a BCS IIB drug.

Yanxiong Gan, Xue Zhang, Dengqiu Xu, Hongjuan Zhang, Jan P. Baak, Lin Luo, Yulong Xia, Jie Wang, Xue Ke, Piaoyang Sun. International Journal of Pharmaceutics. Volume 578, 30 March 2020, 119043. IF=4.845


19. 用于首次人體臨床研究的固體制劑的工業開發方法:預測科學和精益原理的應用


An industrial approach towards solid dosage development for first-in-human studies: Application of predictive science and lean principles.

Kalaria DR, Parker K, Reynolds GK, Laru J. Drug Discovery Today. Volume 25, Issue 3, March 2020, Pages 505-518. IF=7.321


20.  使用體外轉移模型和選擇不同的溶出介質研究弱質子化堿性化合物的溶出性能的意義:使用沙奎那韋作為模型藥物進行考察


The Significance of Utilizing In Vitro Transfer Model and Media Selection to Study the Dissolution Performance of Weak Ionizable Bases: Investigation Using Saquinavir as a Model Drug

Chegireddy M, Hanegave GK, Lakshman D, Urazov A, Sree KN, Lewis SA, Dengale SJ. AAPS PharmSciTech. January 2020. IF=2.401


21. 化合物的類藥性和可開發的空間進化:化學修飾的新形式和新興的小分子


The Evolving Druggability and Developability Space: Chemically Modified New Modalities and Emerging Small Molecules.

Yang W, Gadgil P, Krishnamurthy VR, Landis M, Mallick P, Patel D, Patel PJ, Reid DL, Sanchez-FelixM. AAPS J. January 2020. IF= 3.737


22. 開發具有臨床相關性的口服藥品溶出標準-制藥企業和法規監管的觀點


Developing Clinically Relevant Dissolution Specifications for Oral Drug Products-Industrial and Regulatory Perspectives.

McAllister M, Flanagan T, Boon K, Pepin X, Tistaert C, Jamei M, Abend A, Kotzagiorgis E, Mackie CE. Pharmaceutics. 2019 Dec 23;12(1):19. IF=4.421


23. 在Verubecestat后期臨床階段的制劑開發中支持多晶型藥物的生物豁免的應用-全球法規監管合作的當前挑戰和未來機遇


Biowaiver Applications in Support of a Polymorph During Late-Stage Clinical Development of Verubecestat—Current Challenges and Future Opportunities for Global Regulatory Alignment

Abend A, Xiong L, Zhang X, Frankenfeld C, Kesisoglou F, Reuter K, Kotwal P. AAPS J. 2019 Dec 20;22(1):17. IF= 3.737


24. 通過PBPK吸收模型預測調釋制劑膠囊的體外-體內關系IVIVR和生物等效性


In vitro–In vivo Relationship and Bioequivalence Prediction for Modified-Release Capsules Based on a PBPK Absorption Model.

Jereb R, Opara J, Legen I, Petek B, Grabnar-Peklar D. AAPS PharmSciTech. (2020) 21: 18. IF=2.401

25. 考察無定型納米顆粒對難溶性藥物口服吸收影響的建模實用方法


Practical approach to modeling the impact of amorphous drug nanoparticles on the oral absorption of poorly soluble drugs.

Stewart AM, Grass M. Mol. Pharmaceutics. 2020, 17, 180?189. IF=4.321


26. 利用體外,體內和計算機模擬的方法評估吸收具有pH依賴性的BCS II類化合物并確定降低pH影響的策略


Utilization of In Vitro, In Vivo and In Silico Tools to Evaluate the pH-Dependent Absorption of a BCS Class II Compound and Identify a pH-Effect Mitigating Strategy.

Gesenberg C, Mathias NR, Xu Y, Crison J, Savant I, Saari A, Good DJ, Hemenway JN, Narang AS, Schartman RR, Zheng N, Buzescu A, Patel J. Pharm Res. 2019 Oct 21;36(12):164. IF= 3.242


27. 采用具有生物預測性的體外測試方法,評估過飽和劑型在腸道中的吸收


Biopredictive in vitro testing methods to assess intestinal drug absorption from supersaturating dosage forms.

Hens B, Kataoka M, Ueda K, Gao P, Tsume Y, Augustijns P, Kawakami K, Yamashita S. J Drug Deliv Sci Technol. Volume 56, Part B, April 2020, 101275. IF=2.734


28. 辛伐他汀緩釋的新型脂質藥物傳遞系統的制劑處方和表征:以聚甲基丙烯酸甲酯聚合物作為固體載體


Formulation and characterization of novel lipid-based drug delivery systems containing polymethacrylate polymers as solid carriers for sustained release of simvastatin.

?etkovi? Z, Cviji? S, Vasiljevi? D. J Drug Deliv Sci Technol. Volume 53, October 2019, 101222. IF=2.734


29. 基于生理藥代動力學PBPK模型的吡羅昔康速釋制劑BE豁免和溶出標準的可行性:深度分析


Justification of Biowaiver and Dissolution Rate Specifications for Piroxicam Immediate Release Products Based on Physiologically Based Pharmacokinetic Modeling: An In-Depth Analysis.

Xiaoting Li, Yuanhang Yang, Yu Zhang and et.al. Molecular Pharmaceutics 2019; 16 (9); 3780-3790.  IF=4.321


30. 采用生理藥代動力學PBPK模型,評估影響美托洛爾緩釋藥品生物等效性的制劑因素


Physiologically Based Pharmacokinetic Modeling to Evaluate Formulation Factors Influencing Bioequivalence of Metoprolol Extended-Release Products.

Sumit Basu, Haitao Yang, Lanyan Fang, Mario Gonzalez‐Sales, Liang Zhao, Mirjam N. Trame, Lawrence Lesko, Stephan Schmid. J Clin Pharmacol. Volume59, Issue9. September 2019 Pages 1252-1263.  IF=2.425


31. 使用生理藥代動力學PBPK模型評估卡馬西平過飽和的制劑處方在大鼠體內的生物藥劑學性能


Assessment of Biopharmaceutical Performance of Supersaturating Formulations of Carbamazepine in Rats Using Physiologically Based Pharmacokinetic Modeling.

Thakore SD, Thakur PS, Shete G, Gangwal RP, Narang AS, Sangamwar AT, Bansal AK. AAPS PharmSciTech. Apr 30, 2019. IF=2.401


32. 強心甙Cerberin通過PI3K / AKT / mTOR信號轉導抑制的作用發揮抗癌活性


Cardiac glycoside Cerberin exerts anticancer activity through PI3K/AKT/mTOR signal transduction inhibition.

Hossan MS, Chan ZY, Collins HM, Shipton FN, Butler MS, Rahmatullah M, Lee JB, Gershkovich P, Kagan L, Khoo TJ, Wiart C, Bradshaw TD. Cancer Lett. Mar 28, 2019. IF=7.36


33. 綜合分析固體形態變化對溶解度和滲透性的影響:案例-RORc抑制劑口服給藥后在大鼠體內的暴露


An Integrated Analysis of Solid Form Change Impact on Solubility and Permeability: Case Study of Oral Exposure in Rats of a RORc Inhibitor.

Chiang PC, Nagapudi K, Liu J, Zbieg JR, Plise EG, Deng Y. J Pharm Sci. Feb 7, 2019.IF=3.616


34. 采用基于生理學的吸收模型預測口服緩控制劑和速釋制劑的生物等效性


Physiologically based absorption modeling to predict bioequivalence of controlled release and immediate release oral products.

Mitra A, Petek B, Velagapudi R. European Journal of Pharmaceutics and Biopharmaceutics. Volume 134, January 2019, Pages 117-125. IF=4.60


35. 通過體外,多房室轉移系統和機制性口服吸收模型獲得整體的沉淀動力學,從而預測弱堿性藥物的體內PK


Integration of Precipitation Kinetics From an In vitro, Multicompartment Transfer System and Mechanistic Oral Absorption Modeling for Pharmacokinetic Prediction of Weakly Basic Drugs. 

Patel S, Zhu W, Xia B, Sharma N, Hermans A, Ehrick JD, Kesisoglou F, Pennington J.J Pharm Sci. January 2019 Volume 108, Issue 1, Pages 574–583. IF=3.616


36. 在GastroPlus?中采用動態流體學和pH模型模擬弱堿藥物在血管內和體循環的濃度


Application of a Dynamic Fluid & pH Model to Simulate Intraluminal and Systemic Concentrations of a Weak Base in GastroPlus?.

Hens B, Bolger MB. J Pharm Sci. January 2019 Volume 108, Issue 1, Pages 305–315. IF=3.616


37. 具有體內預測性的溶出方法和模擬研討會匯總:促進口服藥物制劑處方的開發和口服療效的預測


In Vivo Predictive Dissolution and Simulation Workshop Report: Facilitating the Development of Oral Drug Formulation and the Prediction of Oral Bioperformance.

Tsume Y, Patel S, Fotaki N, Bergstrom CAS, Amidon GL, Brasseur JG, Mudie DM, Sun D, Bermejo M, Gao P, Zhu W, Sperry DC, Vertzoni M, Parrott N, Lionberger RA, Kambayashi A, Hermans A, Lu X, Amidon GE. AAPS J. 2018 Sep 6;20(6):100.IF=3.737


38. 采用體外-計算機建模方法評估固體分散劑能否提高纈沙坦溶出度和生物利用度


Assessing the potential of solid dispersions to improve dissolution rate and bioavailability of valsartan: In vitro-in silico approach.

Medarevi? D, Cviji? S, Dobri?i? V, Mitri? M, Djuri? J, Ibric S. Eur J Pharm Sci. 2018 Nov 1;124:188-198. IF=3.616


39. 基于hPEPT1絕對表達量建立伐昔洛韋的生理藥代動力學PBPK模型及其應用


A physiologically based pharmacokinetic model for valacyclovir established based on absolute expression quantity of hPEPT1 and its application.

Sun L, Wang C, Zhang Y. Eur J Pharm Sci. 2018 Oct 15;123:560-568. IF=3.616


40. 采用體外方法評估空腹狀態下,藥物在小腸中的沉淀-PEARRL綜述


In vitro methods to assess drug precipitation in the fasted small intestine – a PEARRL review.

O’Dwyer PJ, Litou C, Box KJ, Dressman JB, Kostewicz ES, Kuentz M, Reppas C. J Pharm Pharmacol. 2018 Jun 28. IF=2.571


41.     探討小型豬的胃排空速率:食物類型和預先給藥(甲氧氯普胺)對胃排空的影響


Exploring gastric emptying rate in minipigs: Effect of food type and pre-dosing of metoclopramide. 

Henze LJ, Griffin BT, Christiansen M, Bundgaard C, Langguth P, Holm R. Eur J Pharm Sci. 2018 Jun 15;118:183-190. IF=3.616


42. 根據堿性鹽形藥物在胃酸過少或胃酸缺乏的生物相關介質中數據,建立其基于生理學的吸收模型


Physiologically Based Absorption Modeling of Salts of Weak Bases Based on Data in Hypochlorhydric and Achlorhydric Biorelevant Media.

Kesisoglou F, Vertzoni M, Reppas C. AAPS PharmSciTech. 2018 Jun 5. IF=2.401


43. 聯合應用體外試驗和計算機模擬的方法指導雷尼替丁胃滯留給藥系統的制備與表征


An in vitro – in silico approach for the formulation and characterization of ranitidine gastroretentive delivery systems.

Cviji? S, Ibric S, Parojci? J, Djuri? J. J Drug Deliv Sci Technol. 2018 June. IF=2.734


44. 通過體外試驗和吸收模型聯用的方法,預測替米沙坦β-環糊精包合復合物調釋制劑


In silico prediction coupled with in vitro experiments and absorption modeling to study the inclusion complex of telmisartan with modified beta-cyclodextrin.

Abhishek Chandra, M. Vivek Ghate,K. S. AithalShaila ,A. Lewis. Journal of Inclusion Phenomena and Macrocyclic Chemistry. June 2018, Volume 91, Issue 1–2, pp 47–60. IF=1.56


45. 聯用胃腸道模擬器GIS和雙相溶出,更好地預測BCS IIb類藥物的體內釋放:酮康唑和雷洛昔芬


The Combination of GIS and Biphasic to Better Predict In Vivo Dissolution of BCS Class IIb Drugs, Ketoconazole and Raloxifene.

Tsume Y, Igawa N, Drelich AJ, Amidon GE, Amidon GL. J Pharm Sci. 2018 Jan;107(1):307-316. IF=3.616


46. 聯用體外動力學模型和生理藥代動力學PBPK模型,評估聚乙烯吡咯烷酮-乙酸乙烯酯共聚物的體內行為


Combining an In Vitro Kinetic Model with a Physiologically-Based Pharmacokinetic Model to Assess the Potential In Vivo Fate of Polyvinyl Pyrrolidone-Vinyl Acetate Copolymers.

Hsieh DS, Luo L, Xu Y, Engstrom JD, Gao Q. Pharm Res. 2018 Feb 28;35(4):79.IF=3.242


47. 采用基于生理學的口服吸收模型研究藥物在腸道中的藥物相互作用


Physiologically Based Oral Absorption Modelling to Study Gut-Level Drug Interactions.

Chung J, Kesisoglou F. J Pharm Sci. 2018 Jan;107(1):18-23. IF=3.616


48. 黃體酮納米晶的制備與評價,以減少藥物的肌肉刺激和提高生物利用度


Preparation and Evaluation of Progesterone Nanocrystals to Decrease Muscle Irritation and Improve Bioavailability.

Li L, Li W, Sun J, Zhang H, Gao J, Guo F, Yang X, Zhang X, Li Y, Zheng A. AAPS Pharm SciTech. 2018 Apr;19(3):1254-1263. IF=2.401


49. 在辛伐他汀載藥的自微乳化藥物遞送系統開發中的體外/計算機模擬方法


In vitro/in silico approach in the development of simvastatin-loaded self-microemulsifying drug delivery systems.

?etkovi? Z, Cviji? S, Vasiljevi? D. Drug Dev Ind Pharm. 2018 May;44(5):849-860.IF=2.365


50.  通過種屬間的PK/PD轉化,評價TRPM8阻斷劑PF-05105679對核心體溫降低的作用


A cross-species translational pharmacokinetic-pharmacodynamic evaluation of core body temperature reduction by the TRPM8 blocker PF-05105679.

Gosset J R, Beaumont K, Matsuura T, et al. Eur J Pharm Sci, 2017. IF=3.616


51. 在藥物發現階段,將高親脂性的難溶性化合物鹽形開發成高劑量給藥的脂質SEDDS制劑


Lipophilic salts of poorly soluble compounds to enable high-dose lipidic SEDDS formulations in drug discovery.

Morgen M, Saxena A, Chen X Q, et al. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117: 212-223. IF=4.604


52. 采用具有體內預測力的溶出系統:胃腸模擬器(GIS),探索過飽和程度對BCS IIb類藥物口服吸收的影響,以雙嘧達莫和酮康唑為例


The impact of supersaturation level for oral absorption of BCS class IIb drugs, dipyridamole and ketoconazole, using in vivo predictive dissolution system: Gastrointestinal Simulator (GIS) . 

Tsume Y, Matsui K, Searls A L, et al. Eur J Pharm Sci, 2017, 102: 126-139. IF=3.616


53.     通過吸收模型和溶出試驗,探索難溶性化合物Basmisanil速釋制劑的釋放特征


Characterising Drug Release from Immediate-Release Formulations of a Poorly Soluble Compound, Basmisanil, Through Absorption Modelling and Dissolution Testing.

Stillhart C, Parrott N J, Lindenberg M, et al. AAPS J. 2017, 19(3): 827-836.IF=3.737


54. 探索藥品研發中狗和人的差異性II:采用建模與模擬的方法探索制劑因素對環丙沙星狗體內吸收與溶出的影響


Exploring Canine-Human Differences in Product Performance. Part II: Use of Modeling and Simulation to Explore the Impact of Formulation on Ciprofloxacin In Vivo Absorption and Dissolution in Dogs.

Martinez M N, Mistry B, Lukacova V, et al. AAPS J. 2017, 19(3): 712-726. IF=3.737


55.  通過體外和計算機建模的方法,表征他克莫司在具有生物相關溶出條件下的釋放


In vitro and in silico characterisation of Tacrolimus released under biorelevant conditions. 

Mercuri A, Wu S, Stranzinger S, et al. International journal of pharmaceutics, 2016, 515(1): 271-280.  IF=4.845


56. 摻有自納米乳化藥物遞送系統的抗結核藥物的體外-體內-計算機模擬研究


In vitro–in vivo–in silico simulation studies of anti-tubercular drugs doped with a self nanoemulsifying drug delivery system.

Hussain A, Singh S K, Singh N, et al. RSC Advances, 2016, 6(95): 93147-93161.IF=3.119


57.  比較狗和人體的腸液對溶解度和生物藥劑學風險評估的影響


Comparing Dog and Human Intestinal Fluids: Implications on Solubility and Biopharmaceutical Risk Assessment [J].

Walsh P L, Stellabott J, Nofsinger R, et al. AAPS PharmSciTech, 2017, 18(4): 1408-1416. IF=2.401


58.  采用體外溶出-滲透池室定量預測pH依賴性藥物與胃酸減少劑的藥物相互作用DDI:采用生理藥代動力學PBPK模型進行比較


Utilizing In Vitro Dissolution-Permeation Chamber for the Quantitative Prediction of pH-Dependent Drug-Drug Interactions with Acid-Reducing Agents: a Comparison with Physiologically Based Pharmacokinetic Modeling [J].

Zhu A Z X, Ho M C D, Gemski C K, et al. AAPS J. 2016, 18(6): 1512-1523.  IF=3.737


59. 采用生理藥代動力學PBPK模型評估藥物輔料對藥物口服吸收的影響:敏感性分析


Using physiologically based pharmacokinetic (PBPK) modeling to evaluate the impact of pharmaceutical excipients on oral drug absorption: sensitivity analyses [J].

Chow E C Y, Talattof A, Tsakalozou E, et al. AAPS J. 2016, 18(6): 1500-1511.IF=3.737


60. 開發用于描述在空腹和餐后條件下氯吡格雷片劑給藥的體外體內相關IVIVC模型


Development of in vitro in vivo correlation models for clopidogrel tablets to describe administration under fasting and fed conditions.

Savu S N, Silvestro L, Mircioiu C, et al. Farmacia, 2016, 11(16): 18. IF=1.607


61. 通過胃腸模擬技術探索BCS III類藥物的豁免可行性:拓展到特定部位吸收的試驗


Exploring the Feasibility of Biowaiver Extension of BCS Class III Drugs with Site-Specific Absorption Using Gastrointestinal Simulation Technology.

Sun L, Sun J, He Z. European Journal of drug metabolism and pharmacokinetics, 2017, 42(3): 471-487. IF=1.913


62. 采用基于生理學的吸收模型,探討食物和胃液pH值變化對艾樂替尼PK的影響


Physiologically Based Absorption Modeling to Explore the Impact of Food and Gastric pH Changes on the Pharmacokinetics of Alectinib [J].

Parrott N J, Li J Y, Takano R, et al. AAPS J. 2016, 18(6): 1464-1474.  IF=3.737


63. 用于無定形固體分散體制劑處方的基于生理學的吸收模型

Physiologically Based Absorption Modeling for Amorphous Solid Dispersion Formulations.

Mitra A, Zhu W, Kesisoglou F. Molecular pharmaceutics, 2016, 13(9): 3206-3215.IF=4.321


64.     基于Lesinurad速釋片劑的PBPK吸收模型,探索藥品溶出速率和原料藥粒徑規格的豁免


Justification of drug product dissolution rate and drug substance particle size specifications based on absorption PBPK modeling for Lesinurad immediate release tablets.

Pepin XJ, Flanagan TR, Holt DJ, Eidelman A, Treacy D, Rowlings CE. (2016) Mol Pharm. Jul 20. 13(9): 3256-3269. IF=4.321


65. 用于酯類前藥臨床試驗藥品緩釋制劑設計的基于生理學的吸收模型


Physiologically Based Absorption Modeling to Design Extended-Release Clinical Products for an Ester Prodrug.

Ding X, Day J S, Sperry D C. AAPS J. 2016, 18(6): 1424-1438. IF=3.737


66. 采用PBPK吸收模型指導加波沙朵的調釋制劑處方開發,這是一種高溶解度且吸收具有胃腸道區域依賴性的化合物


Utility of PBPK Absorption Modeling to Guide Modified Release Formulation Development of Gaboxadol, a Highly Soluble Compound with Region-Dependent Absorption.

Kesisoglou F, Balakrishnan A, Manser K. (2015) J Pharm Sci. Oct 12. IF=3.616


67. 采用建模與模擬探究處方對低溶解度藥物吸收的影響-環丙沙星


Use of Modeling and Simulation Tools for Understanding the Impact of Formulation on the Absorption of Low Solubility Compound: Ciprofloxacin.

Martinez M, Mistry B, Lukacova V, Polli J, Hoag S, Dowling T, Kona R, Fahmy R.AAPS J. Apr 26. IF=3.737


68.  針對腸溶包衣制劑具有生物預測力的溶出方法


Toward Biopredictive Dissolution for Enteric Coated Dosage Forms.

Al-Gousous J, Amidon GL, Langguth P. (2016) Mol Pharm. May 10. IF=4.321


69. 溶解度-滲透性的相互影響和口服制劑處方的設計:考慮雙因素比單因素效果更好


The solubility-permeability interplay and oral drug formulation design: Two heads are better than.one.

Dahan A, Beig A, Lindley D, Miller JM. (2016) Adv Drug Deliv Rev. Apr 26. IF=13.3


70. 孔隙阻塞:防止酒精傾瀉的多顆粒制劑處方的新策略


Pore blocking: An innovative formulation strategy for the design of alcohol resistant multi-particulate dosage forms.

Schrank S, Jedinger N, Wu S, Piller M, Roblegg E. (2016) Int J Pharm. 509(1-2):219-28. IF=4.845


71. 采用生理藥代動力學PBPK模型預測雙環醇控釋制劑在人體的PK


Application of physiologically based pharmacokinetic modeling in the prediction of pharmacokinetics of bicyclol controlled-release formulation in human.

Wang B, Liu Z, Li D, Yang S, Hu J, Chen H, Sheng L, Li Y. (2015). Eur J Pharm Sci.Jun 24. IF=3.616


72. 生理學吸收模型在安非他命鹽型藥品的仿制藥評價中的應用


Application of Physiologically Based Absorption Modeling for Amphetamine Salts Drug Products in Generic Drug Evaluation.

Babiskin AH, Zhang X. (2015). J Pharm Sci. May 13. IF=3.616


73. 自我聚合和過飽和在難溶性弱堿藥物口服吸收中的作用


Role of Self-Association and Supersaturation in Oral Absorption of a Poorly Soluble Weakly Basic Drug.

Narang AS, Badawy S, Ye Q, Patel D, Vincent M, Raghavan K, Huang Y, Yamniuk A, Vig B, Crison J, Derbin G, Xu Y, Ramirez A, Galella M, Rinaldi FA. (2015) Pharm Res. Feb 28. IF=3.242


74. 對比腸道環境的具有生物相關性的模擬溶出介質,評估難溶性藥物的溶解度曲線


Comparison of biorelevant simulated media mimicking the intestinal environment to assess the  solubility profiles of poorly soluble drugs.

Prasad D, Gu CH, Kuldipkumar A. (2015) Pharm Dev Technol. Feb 23:1-7. IF=2.169


75. 藥學-難溶性是藥學中的難題:探索丙型肝炎蛋白酶抑制劑的機制和解決方案


The potency–insolubility conundrum in pharmaceuticals: Mechanism and solution for hepatitis C protease inhibitors.

Connelly PR, Snyder PW, Zhang Y, McClain B, Quinn BP, Johnston S, Medek A, Tanoury J, Griffith J, Walters WP, Dokou E, Knezic D, Bransford P. (2015)Biophysical Chem. 196:100-108. IF=1.995


76. 開發溶出和沉淀的合并模型,并用于預測藥物的口服吸收


Development of a Unified Dissolution and Precipitation Model and Its Use for the Prediction of Oral Drug Absorption.

Jakubiak P, Wagner B, Grimm HP, Petrig-Schaffland J, Schuler F, Alvarez-Sánchez R. (2016) Mol Pharm. Jan 5. IF=4.321


77. 通過數學模型加速鹽酸二甲雙胍緩釋片劑的開發


Mathematical Model-Based Accelerated Development of Extended-release Metformin Hydrochloride Tablet Formulation.

Chen W, Desai D, Good D, Crison J, Timmins P, Paruchuri S, Wang J, Ha K. (2015)AAPS PharmSciTech Oct. 19. IF=2.401


78. 通過調釋制劑的設計降低窄治療指數窄藥物引起的臨床不良反應事件:體外,體內,計算機預測和臨床PK分析


Mitigation of Adverse Clinical Events of a Narrow Target Therapeutic Index Compound through Modified Release Formulation Design: An In Vitro, In Vivo, In Silico, and Clinical Pharmacokinetic Analysis.

Good DJ, Hartley R, Mathias N, Crison J, Tirucherai G, Timmins P, Hussain M, Haddadin R, Koo O, Nikfar F, Fung NK. (2015) Mol Pharm. Nov 4. IF=4.321


79. 使用體外、計算機模擬和大鼠體內模型預測具有pH依賴性的藥物吸收:在先導化合物優化階段盡早評估


Prediction of pH dependent absorption using in vitro, in silico, and in vivo rat models: Early liability assessment during lead optimization.

Saxena A, Shah D, Padmanabhan S, Gautam SS, Chowan GS, Mandlekar S, Desikan S. (2015) Eur J Pharm Sci. May 8;76:173-180. IF=3.616


80. 使用親水和疏水等級的二氧化硅Aerosil?制備氯雷他定的自微乳釋藥系統SNEDDS固體制劑,并進行PK評估,使用計算機模擬的GastroPlus?的進行體內預測


Solidified SNEDDS of loratadine: formulation using hydrophilic and hydrophobic grades of Aerosil?, pharmacokinetic evaluations and in vivo–in silico predictions using GastroPlus?.

Verma S, Singh SK, Verma PRP. (2016) RSC Adv. 6:3099-3116. IF=3.119


81. 以地爾硫卓作為模型藥物,通過新型口服可吞咽IntelliCap(?)裝置對人胃腸道區域的藥物吸收進行定量研究


Novel Orally Swallowable IntelliCap(?) Device to Quantify Regional Drug Absorption in Human GI Tract Using Diltiazem as Model Drug.

Becker D, Zhang J, Heimbach T, Penland RC, Wanke C, Shimizu J, Kulmatycki K. (2014) AAPS PharmSciTech. Dec;15(6):1490-7. IF=2.401


82.  新的抗腫瘤吡唑衍生化合物的生物藥劑學概況


Biopharmaceutical profiling of new antitumor pyrazole derivatives.

Anuta V, Nitulescu GM, Dinu-P?rvu CE, Olaru OT. (2014) Molecules. Oct 13;19(10):16381-401. IF=3.267


83. 生物藥劑學分類BCS系統的亞型:用于預測體內溶出(IPD)的方法和IVIVC


The Biopharmaceutics Classification System: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC.

Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. (2014) Eur J Pharm Sci. Jan 28. IF=3.616


84.     在藥物早期開發階段,通過臨時調配緩控釋制劑加速候選藥物的開發


Extemporaneously prepared controlled release formulations for accelerating the early phase development of drug candidates.

Thombre AG, Berchielli A, Rogers JF. (2014) Drug Discov Today. Feb 19. IF=7.321


85. 新的組織蛋白酶K抑制劑ONO-5334對骨吸收標志物的影響:對具有不同PK模式的4種緩釋制劑進行研究


Effects of novel cathepsin K inhibitor ONO-5334 on bone resorption markers: a study of four sustained release formulations with different pharmacokinetic patterns.

Tanaka M, Hashimoto Y, Sekiya N, Honda N, Deacon S, Yamamoto M. (2013) J Bone Miner Metab. Oct 11. IF=2.297


86. 基于機制性胃腸模擬和人工神經網絡開發的藥物吸收體外-計算機模擬-體內模型:以硝苯地平滲透泵緩釋片為例


In vitro – in silico – in vivo drug absorption model development based on mechanistic gastrointestinal simulation and artificial neural networks: Nifedipine osmotic release tablets case study.

Ilic M, Duri? J, Kovacevic I, Ibric S, Parojcic J. (2014) Eur J Pharm Sci. Jun 6.IF=3.616

87. 用于難溶性藥物遞送系統的無定形固體分散體和納米晶技術


Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery.

Brough C, Williams RO 3rd. (2013) Int J Pharm. Jun 7. IF=4.845


88. 用生理藥代動力學PBPK模型評價藥物鹽形的溶解度,并納入篩選程序:以苯妥英為例


Incorporation of Physiologically Based Pharmacokinetic Modeling in the Evaluation of Solubility Requirements for the Salt Selection Process: A Case Study Using Phenytoin.

Chiang PC, Wong H. (2013) AAPS J. Aug. 14. IF=3.737


89. 通過臨床前狗的研究試驗和吸收模型,促進BCS II候選藥物后期的制劑處方橋接


Use of Preclinical Dog Studies and Absorption Modeling to Facilitate Late Stage Formulation Bridging for a BCS II Drug Candidate.

Kesisoglou F. (2013) AAPS Pharm SciTech. Sep 11. IF=2.401


90. 評估新化合物的吸收具有pH依賴性的風險:通過新的體外溶出試驗,物理化學性質分析和風險評估策略


Assessing the Risk of pH-Dependent Absorption for New Molecular Entities: A Novel in Vitro Dissolution Test, Physicochemical Analysis, and Risk Assessment Strategy.

Mathias NR, Xu Y, Patel D, Grass M, Caldwell B, Jager C, Mullin J, Hansen L, Crison J, Saari A, Gesenberg C, Morrison J, Vig BS, Raghavan K. (2013) Mol Pharm. Sep 13. IF=4.321


91. 通過對阿西替尼Axitinib與人外排和肝臟攝取轉運體的體外相互作用進行表征,了解這些因素對處置和藥物相互作用的影響


In Vitro Characterization of Axitinib Interactions with Human Efflux and Hepatic Uptake Transporters. Implications for Disposition and Drug Interactions.

Reyner E, Sevidal S, West MA, Clouser-Roche A, Freiwald S, Fenner K, Ullah M, Lee C, Smith BJ. (2013) Drug Metab Dispos. May 31. IF=3.231


92.  通過基于生理學的吸收模型,研究阿片類拮抗劑在臨床上PK的變異度


Investigation of clinical pharmacokinetic variability of an opioid antagonist through physiologically based absorption modeling.

Ding X, He M, Kulkarni R, Patel N, Zhang X. (2013) J Pharm Sci. 102(8):2859-74.IF=3.616


93.  采用計算機預測腸道pH的變化對BCS II類弱酸性藥物溶出和吸收的影響:布洛芬和酮洛芬


In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen.

Tsume Y, Langguth P, Garcia-Arieta A, Amidon GL. (2012) Biopharm. Drug Dispos.doi: 10.1002/bdd.1800. IF=1.663


94.  通過最大可吸收劑量評估臨床藥品的可開發性

Developability assessment of clinical drug products with maximum absorbable doses.

Ding X, Rose JP, Van Gelder J. (2012) Int J Pharm. 427(2):260-9. IF=4.845


95. 尼羅替尼臨床前PK和針對臨床項目的口服吸收和體循環生理利用度的實際應用

Nilotinib preclinical pharmacokinetics and practical application toward clinical projections of oral absorption and systemic availability.

Xia B, Heimbach T, He H, Lin TH. (2012) Biopharm Drug Dispos. Oct. 24. IF=1.663


96.  在藥物發現階段,通過對口服生物利用度的篩選來增強后期制劑的開發

Selection of oral bioavailability enhancing formulations during drug discovery.

Zheng W, Jain A, Papoutsakis D, Dannenfelser RM, Panicucci R, Garad S. (2012)Drug Devel. Indus. Pharm. 38(2):235-47. IF=2.365


97. 狗體內胃pH對BCS II類化合物PK的影響:利用人工胃和十二指腸溶出模型和GastroPlus?模擬預測藥物的吸收

Effect of gastric pH on the pharmacokinetics of a BCS Class II compound in dogs: Utilization of an artificial stomach and duodenum dissolution model and GastroPlus? simulations to predict absorption.

Bhattachar SN, Perkins EJ, Tan JS, Burns LJ. (2011) J Pharm Sci. Jun 16. IF=3.616

點擊查看其他文獻


  • GastroPlus在FDA等法規部門的應用文章(2016-2020)

  • GastroPlus在PBPK、ACAT、PBBM模型應用的綜述文章(2011-2020)

  • 采用GastroPlus預測PK曲線或PK參數的應用文章(2011-2020)

  • GastroPlus在IVIVC, IVIVR, BE考察的應用文章(2012—2020)

  • GastroPlus在PK-PD結合模型的應用文章(2012—2020)

  • GastroPlus在預測特定人群PK的應用文章(2011—2020)

  • GastroPlus在預測藥物相互作用DDI的應用文章(2011 —2020)

  • GastroPlus在考察食物效應的應用文章(2013—2020)

  • GastroPlus在考特殊給藥途徑的應用文章(2012—2020)

  • GastroPlus在毒理領域的應用文章(2012年—2020年10月)

  • 評估GastroPlus預測準確性的應用(2011年—2020年 10月)

  • 中國用戶采用GastroPlus發表的應用文章(2013年—2020年10月)



  • 上一頁: 采用GastroPlus預測PK曲線或PK參數的應用文章 (2011—2020)
  • 下一頁: GastroPlus在IVIVC, IVIVR, BE考察的應用文章(2012—2020)
logo
  • 上海市
  • 021-50263208
  • 客服微信:ipharmogo

快捷導航

  • 關于我們
  • 新聞資訊
  • 產品中心
  • 培訓中心
  • 在線申請
  • 聯系我們

關注公眾號
了解更多資訊

Copyright ? 2018-2021 上海凡默谷信息技術有限公司 All Rights Reserved.    

電話咨詢
產品中心
新聞資訊
QQ客服
久久中文字幕人妻熟女22页,久久综合中文字幕无码,亚洲欧美日韩综合俺去了,小泽玛利亚一区二区免费